三菱重工長崎造船所では、1996年12月にノルウェーのWilhelmsen Linesに多目的大型RO/RO貨物船“TARONGA”を引渡した。“TARONGA”は長崎造船所にとっては17年振りのRO/RO船であるとともに、世界最大級かつ当社の持てる最新の技術を最大限度に取り入れた新世代のRO/RO貨物船である。本報では“TARONGA”の技術的な特徴について解説する。

Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard & Machinery Works delivered TARONGA, a multi-purpose RO/RO cargo ship, to Wilhelmsen Lines of Norway in December, 1996. TARONGA is one of the world's largest RO/RO cargo ships and fully incorporates Mitsubishi Heavy Industries, Ltd. newest shipbuilding technology. The technical characteristics of TARONGA are described in this paper.

1. まえがき

RO/RO貨物船とは、コンテナ、乗用車、乗用車、重車両、ヘリコプター、鉄道車両、プラント、大型建設機械、鋼材、木材製品、工作機械等様々な貨物を輸送する貨物船のことで、これらの貨物をトレーラー（台車）に乗せ、あるいは自走により岸壁から船内へ積込む。この種の船は荷役をRoll On（車輪で積込む）、Roll Off（車輪で積出し）により行うことからRO/RO船と呼ばれる。ちなみに自動車運搬船やウェリーやRO/RO船の一種である。またRO/RO船は、様々な貨物を岸壁から直接荷役ができるため、世界各地の港湾、特に大型岸壁クレーン等荷役装置のコンテナ化の進んでいない港にも荷役可能であることが特徴として挙げられる。

大型RO/RO貨物船は世界で約15隻就航しているが、ここでは“TARONGA”的紹介とともにRO/RO貨物船の技術について解説する。世界でも屈指の大型RO/RO貨物船オペレータであるWilhelmsen Lines向けに引渡された“TARONGA”は、大型RO/RO貨物船の中でも最大かつ最新鋭のRO/RO貨物船である。“TARONGA”的主要項目を表1に示す。また海上試運転時の航走状況を図1に示す。

2. RO/RO貨物船建造の技術

2.1 貨物倉庫面の配置

重量物を搭載したトレーラーやが貨物倉庫に含まれるRO/RO貨物船は典型的な配置設計船である。貨物積載数・荷役効率のアッパーに重視その配置に懸かっているとは言えず、重要な荷役の視点からの設計が求められる。“TARONGA”の一般配置図を図2に示す。以下に設計重視点を簡潔に解説する。

(1) 乗込み口（スタンダム）

乗込みデッキは、RO/RO船の収容と寄港する港湾の岸壁との相対高さ、機関室配置、荷物組み重ね高さなどを考慮して決定される。“TARONGA”もその例外ではなく上記の条件を考慮した結果、暴露甲板直下の倉内最上層甲板（乾船（げん）甲板）を乗込みデッキとした。このデッキの最後部右岸に船体中綱より約38°の傾斜で全長約44m、先端部で有効幅12m、ヒンジ部で有効幅20m、最大設計荷重320tのスタンダムラフトを配置した。図3にスタンダムラフトを示す。船内乗込み口と船の幅方向に乗込み口は3分割されており、左船は下部デッキへ
図 2 RO/RO 貨物船 "TARONGA" の一般配置図
"TARONGA" の船全体の配置を示す。
General arrangement of RO/RO ship TARONGA

図 3 スターンランプ
船尾部右舷に装置されたスターンランプ作動中の
状況を示す。
Stern ramp

図 4 上下可動式デッキと可動式ランプ
上下可動式デッキに備え付けられた可動式ランプ（格納時）を示す。
Movable ramp (stowed position) at hoistable deck

のランプへの入口、中央は上部デッキへ通じるランプへの入口、そして右舷は乗込みデッキ前部への入口となっており、効率良好荷役への配慮がなされた設計となっている。

(2) 貨物区画配置

乗込みデッキとその下方に位置するデッキは、コンテナや一般貨物を主に積載する区画である。スターンランプから乗込んだトレーラーは、最下層デッキまで一直線に配置された左舷のランプを通じ各貨物倉へのアクセスが可能となっている。ランプは大型トレーラーが対面走行できる幅となっている。

乗込み口中央に配置された上部デッキへのランプを通じると暴露出甲板へと通じ、またランプを上ってすぐに左に180°回転すると、一直線に配置されたランプを通って更に上部の乗用車専用貨物倉へと通じている。暴露出甲板はコンテナ専用区画となっており、最大5段、1356 TEU（20ft コンテナ換算）まで積載可能である。暴露出甲板後部の居住区下は4層の自動車用デッキとなっており、最大573台の乗用車が積載可能である。そのうち、下から2層目は油圧駆動の上下可動式デッキとなっており（図4参照）、3層目デッキと接するまで上げると最下層デッキはコンテナと一般貨物が積載可能となる。

このように船内のデッキやランプは荷役効率を考慮し、かつ貨物の種類とその配分に応じて無駄なく積載が行える設計となっている。

(3) その他

倉内の貨物固定装置は、トレーラー等のスムーズな通行のためコンテナ用、一般貨物用を含めすべてデッキや壁への埋め込みタイプとし、突起物をなくした設計としている。また、貨物可積載面積を増やすべく船舶甲板面より上方のフリーゾを大きくし、暴露甲板の貨物スペースを完全に長方形とした。船尾部は、前述の巨大なスターンランプを装備するため乗込み口の位置で最大幅となるような船型とした。

2.2 船型設計

"TARONGA" は、設計喫水10.7mにて以下の条件を考慮し
これらの条件は一般的に相反する傾向がある。例えば、載荷重量や復原性を満足させるため、さらには乗込み甲板での船舶の確保、層内密度面積の確保のために船型を肥大させたり水線面積を大きくする傾向と抵抗が大きくなり、马力増・燃費悪化となるという問題である。これらの厳しい条件を満たす元で最適化させるために当社の豊富な経験と実績を基にCFD（Computational Fluid Dynamics）を用いて船型を検討し、水槽試験でその性能を検証して船型を決定した。

上記要素と合わせ振動問題も大きな課題である。このような船型では、プロペラ上方の船底が平たくてプロペラ回転により発生する動圧を受けるようになるため、それが起振を起こし船尾船体を振動させ、居住区や機関室の振動問題が発生しやすい。したがって、船尾の船型を工夫しプロペラ位置における伴流分布をできるだけ均一化するとともに、圧力の良い、起振の少ないハイスキュープロペラの設計が不可欠となる。

そこでハイスキュープロペラの設計に際しては、独自開発のプロペラ揚水力理数及び揚水力理数に基づく理論設計手法を用い、キャビテーションの発生を抑えるため、異常における荷重を低減したゆるワイプアップロペラを採用した。表2はこのようにして設計したプロペラの主要項目であるが、本プロペラのキャビテーション性能を評価するため、最新のCFDを活用し、船尾の不均一伴流中におけるプロペラ翼面上の非定常圧力分布の精度計算を行った。

計算法（図5参照）から、翼表面圧力の低圧部は翼前縁近傍に限られおり、キャビテーションの発生範囲が狭いことが分かった。キャビテーション水槽における模型試験結果からもこのことが確認され、プロペラ変動圧力も従来のプロペラと比べ大幅に低減し、設計目標における低起振力を達成できることが判明した。さらにプロペラ単独試験でも、目標とおりの高いプロペラ効率が確認された。

このようなにして建造された本船は、海上試運転において速力性能を十分満足するとともに、振動レベルも設計条件であるISO基準（ISO 6954）のロワライン以下を達成した。

2.3 損害時の安全性

RO/RO貨物船はSOLAS（海上人命安全事故）に定める乾貨船の損傷時復原性規則を満足する必要がある。この規則は、船首のあらゆる区画が個別でないかに損傷した後の平衡状態における復原力を数値化し、それに区画が損傷する確率を乗じて求まる船全体の生存確率が基準値以上であることを義務付けたものである。

“TARONGA”では貨物倉区画を二重船殻構造とするとともに、乗込みデッキ全体を水平水密甲板と位置付け、下層デッキとの路線はラップ、緊急脱出路も含めすべて水密構造とした。

図6に水密ラップカバーを示す。さらに本船は船の前後方向に通じる広大なデッキを倉内に持つため、前述の対策ではのはずを満足できず、乗込みデッキの船体中央付近に貨物倉を前後に仕切る水密ドアを装備した（図7参照）。

また、乗込みデッキから上部デッキに通じるラップ下部に融雪上げ式の水密ドアを設置し、SOLASの損傷時復原性規則を満足させることとした。これらの水密ドアやラップは航路中完全に閉鎖され模区画を水密に保持する。

一方、船主からは乗組員の安全性重視の観点から、SOLASの規則より更に厳しい要求を課す船尾水密甲板を損傷範囲に含め、船の長手方向のいかなる場所の船内損傷においても、乗組員
にくく各損傷シナリオでの浸水状態時刻歴解析を行い、船体の挙動が安定して推移することを確認した。また電流破板上に配置された通風ファンによる適切な電気を設けることなどで船の要求を満足することができた。

3. 例示

多種多様な船舶の建造実績を持つ当社においても、17年振りという亜久の本格的な大型RO/RO貨物船建造であったが、豊富な実績と経験を足に、最新の技術を組み込む設計・建造を進めた結果、“TARONGA”は海上試運転でも諸性能を保証した。

引渡し後は世界の港へ就航し、その能力を存分に発揮し、船主の高い評価を受けており、今後ともあらゆる顧客のニーズにこたえるべく、当社の総合力を生かした最新技術の船舶への応用などへ絶え間ない努力をしていく所存である。

最後に“TARONGA”の建造に係わった多数の関係各位に深く感謝の意を表する次第である。

---

開放特許・新案

通風筒カバーの開放固定装置

実用新案登録 第1956720号
発明者 長崎造船所 古賀信雄

通風筒の開口部にヒンジ連結されている開閉可能なカバー側ヒンジ金具のヒンジ側部に、前記カバーの開放時に前記通

風筒に当接し同カバーの開放回転を所定角度に制限して固定するストッパーを設けてすることを特徴とする通風筒カバーの開放固定装置。

図面の簡単な説明

図1は本案の一実施例を示す要部の側視図、図2は從来例の側視図である。