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  In chemical plants and industrial plants, “soft sensors” is known as a technology to estimate 

state quantities that cannot be measured directly. Their application for purposes such as control and 
monitoring are progressing. Recent technological developments in deep learning are remarkable. 
While their employment in soft sensors has enabled highly accurate estimation, the problem lies in 
the necessity of a longer training time. To address this problem, we built a soft sensor using 
“Reservoir Computing,” with which training can be done in an extremely short time while retaining 
the high accuracy of estimation. This report presents an overview of Reservoir Computing and its 
application using a case study on the prediction of calcium carbonate concentration in flue gas 
desulfurization equipment. 

  |1. Introduction 
In recent years, AI technologies such as machine learning and deep learning have been in rapid

development. Their application in addressing industrial problems, particularly time-series prediction 
of unknown state quantities, is being actively promoted. For example, some types of state quantities
in the field of plants are important yet difficult to measure. If models to predict such state quantities
in real time can be built, it can be expected that these will be used as an alternative to hardware
sensors, reducing sensor operational costs and improving plant operability through the application to
anomaly detection and control. Such prediction models, which can replace hardware sensors, are 
generally called “soft sensors”. Highly accurate modeling is possible by allowing AI-based time-
series prediction models to be trained on the operation data measured/collected in the past. 

A Recurrent Neural Network (RNN), which is a kind of deep learning model, is one of the 
well-known representative methods of AI-based time-series prediction. However, RNNs generally 
are trained by repeatedly adjusting a large number of internal parameters of models, which are so
numerous that countless hours of training are required if models are trained on long-term operation 
data. For this reason, there were two bottlenecks in the practical application of AI-based highly 
accurate soft sensors. The first was the inability to make full use of collected data for training, because 
of the limited computing resources (e.g., using edge computers installed at a plant) making it
necessary, for example, to undersample operational datasets or limit training data. The second was
the inability to readily update soft sensors according to temporal changes. 

“Reservoir Computing” is referred to as a possible solution to these problems in the context
of time-series prediction technology (detailed in Chapter 2). One of its well-known representative 
methods is an “Echo State Network (ESN)(1)”, which is characterized by extremely short training 
time and no need for repeated adjustment of internal parameters despite it being an RNN capable of
forecasting the time series dynamics with high accuracy. Mitsubishi Heavy Industries, Ltd. has 
arranged the ESN design guidelines under the academic guidance of Tohoku University. The
effectiveness of ESN in the creation of soft sensors has been verified in terms of both training time
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and prediction accuracy by examining its application using operation data from actual plants. The 
summary is given in this report. 

|2. Reservoir Computing technology: ESN 
Reservoir Computing is a modeling technique for time series based on the concept of (a)

mapping input time series into a high-dimensional space and (b) reading desired information from 
the mapped space. For example, when we throw a couple of pebbles into a reservoir, complex ripples
are formed on the water. Let us suppose that these ripples contain information about the pebbles
(such as mass, shape and trajectory), then it would be somehow possible to make approximations in
this regard from the ripples. The term “Reservoir Computing” came from this metaphor. It can be
said that the sequence of physical phenomena, “starting from the pebbles’ motion to the formation 
of ripples”, corresponds to (a) of the above, while “estimation of relevant information based on the
formed ripples pertains” corresponds to (b) of reading information capable(2). Reservoir Computing 
focuses on (a) mapping into a given high-dimensional space and (b) figuring out how to read desired 
information from it. Described below is the ESN, which is an RNN based on this concept and is one
of the paradigms of Reservoir Computing. 

Given in Figure 1 are the conceptual diagrams of typical RNN and ESN architectures and 
training methods. Consisting of three layers (input, hidden and output) each with a network of
connected neurons, both RNNs and ESNs train by adjusting the strength of neural connections (called
“weight”) to produce a desired input-output relationship. However, their training methods are quite
different from each other. In typical RNN training, time series are inputted in sequence before
prediction values are computed, which is followed by simultaneous adjustment of all weights of 
input, hidden and output layers according to the assessment of prediction error. This series of
processes are repeated, until the prediction error becomes small enough. In ESNs, on the other hand,
the weights of both input and hidden layers are fixed after random initialization. Training of the
weights of the output layer is done considering the output layer as a simple linear combination layer.
When the same input is given, the output of the hidden layer (which is the input to the output layer) 
is invariant if the input and hidden layers have fixed weights. Performing linear regression once
therefore suffices to train the weights of the output layer, making repeated weight adjustment
unnecessary. Thus, ESNs are most characterized by their extremely fast training capability while 
time-series modeling as complex as RNNs is possible. In ESNs, furthermore, the hidden layer and
the output layer correspond to (a) of the above and (b), respectively. They are also called the reservoir
layer and the readout layer, respectively. 

 
Figure 1  Conceptual comparison between typical RNNs and ESNs(2) 
 

|3. ESN design guidelines 
Figure 2 is a block diagram showing a typical ESN architecture. The input data are given as

vectors, which are linearly transformed by the weight matrix 𝑾  in the input layer. In the reservoir 
layer, the linearly transformed data are further transformed through the activation function 𝒇 into 
reservoir state vectors. The use of previous reservoir states in this transformation process enables
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time-series modeling. In the readout layer, the reservoir state vectors are combined with the input
data, which are then linearly transformed by the weight matrix 𝑾  to produce the final output of 
prediction values. ESNs are a simple method in which only this 𝑾  is trained. For this reason, 
designing an appropriate model architecture in advance is the key to achieving an accurate input-
output relationship. This chapter pertains to ESN design guidelines for the practical application to
soft sensors. 

 
Figure 2  Typical ESN block diagram 
 

3.1 Automatic adjustment of hyperparameters 
The ESN architecture shown in Figure 2 (except for the part of the readout layer) is mainly

determined by the dimension of the reservoir state, the parameters of random weight distributions
for the input and reservoir layers, and parameter α (called the leakage rate) that adjusts the speed of 
the dynamics represented. These parameters are called hyperparameters. While the optimality of
hyperparameters depends on a given prediction task, some empirical guidelines for adjustment are
known(3), but a definite methodology has yet to be established. Manual adjustment has therefore been
needed so far. The previous study reported the effectiveness of Bayesian optimization for
hyperparameter adjustment(4). Such technology has enabled labor-saving automatic adjustment. 
3.2 Selection of appropriate activation function 

A non-linear function needs to be applied as the activation function, if the approximation
capability of ESN is to be enhanced. The tanh function is used in most cases. While this tanh function
is odd, it is known that the use of an even function such as a sinc function (𝑦 = sin(𝑥)/𝑥) can 
improve the ESN accuracy for certain prediction tasks(5). Like in the case of hyperparameters, 
addressed in the preceding section, the optimality of activation function depends on a given 
prediction task. This requires other activation functions than the tanh to be tested for appropriate
selection. 
3.3 Multi-step-ahead prediction and linear interpolation 

In typical ESNs, the prediction value is outputted one-step ahead for each of the evenly spaced 
inputs. However, when the timestep is small relative to the dynamics of the prediction target (i.e.,
when a slow response system is modeled using small time interval data), the amount of change made
in every timestep becomes relatively small. If this is the case, there is a concern that such models
may become susceptible to noise when they are trained on actual data. A measure against this
problem is considered to train ESNs to predict multi-steps ahead, so that these ESNs can predict one-
step ahead by performing linear interpolation between the predicted value at a given time and the
value obtained by multi-step-ahead prediction. 
3.4 Ensemble of models 

The method called “ensemble” involves preparing multiple prediction models and providing 
the average (or median, etc.) of their prediction values as the output of the models as a whole. It is a
technique generally used in the fields of machine learning and deep learning to improve the accuracy
and stability of prediction. Because of their principle that the weights of input and reservoir layers
are fixed on a random basis, ESNs intrinsically hold the risk of destabilizing the prediction. Although
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complete avoidance is impossible, it is possible to reduce the risk to some extent with the use of 
ensemble. 

The conceptual diagrams of the aforementioned four points of design guidelines are shown in
Figure 3. 

Figure 3  ESN design guidelines for creating soft sensors 
 

|4. Verification using data from actual plant 
This chapter describes an example of the application of ESN to the prediction of calcium

carbonate concentration in flue gas desulfurization equipment in order to verify the effectiveness of
soft sensor building by ESN. Conventionally, regarding the flue gas desulfurization equipment of 
our company, we have provided an analyzer to customers to measure the calcium carbonate
concentration in the absorption tower for operation monitoring and control purposes. Problems such
as blockage in the sampling tube necessitate periodic maintenance. Under such circumstances, we
have been working on the development of soft sensors for estimating the calcium carbonate
concentration, as part of our undertakings to realize AI-based optimal facility operation/maintenance 
and develop digital solutions for reduced operational costs. Highly accurate soft sensors using deep
learning have already been realized(6). However, as high training costs remained problematic, we
attempted to use ESNs for enabling fast and accurate training of soft sensors. 

In this attempt, about two months’ worth of operation data from existing flue gas
desulfurization equipment were used to train ESN models to predict the calcium carbonate
concentration based on eight explanatory variables such as SO2 concentrations at the inlet and outlet 
of the absorption tower. For this purpose, we followed the ESN design guidelines described in the
previous chapter, that is, using a sinc function as the activation function (Section 3.2), performing
15-step-ahead prediction (Section 3.3), allowing 10 models to be trained while automatically
adjusting the hyperparameters (Section 3.1), and building ensembles of these 10 models (Section
3.4). 

Figure 4 shows the cross-validated results of the accuracy of calcium carbonate concentration
prediction by this ESN, together with the model’s training time per sample. These results are
compared with those of a Long Short-Term Memory (LSTM), which is a well-known RNN(7). While 
the ESN prediction accuracy is as high as or higher than that of LSTM, the training time is about
1/140 of LSTM. This has demonstrated that fast and accurate training of soft sensors is possible with
ESNs. 
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Figure 4  Prediction accuracies and model training times of ESN and LSTM 

for prediction problem of calcium carbonate concentration 
 

|5. Conclusion 
ESNs are a well-known method of Reservoir Computing, which is a technology for enabling

fast and accurate time-series prediction. This report summarizes ESN design guidelines for the
practical application to soft sensors. Following the design guidelines, we attempted to train ESN
models for soft sensors to compute the calcium carbonate concentration in flue gas desulfurization 
equipment. The results indicate that the training time can be reduced to about 1/140, despite the
accuracy of soft sensors being as good as or better than the conventional deep learning method.
However, ESN-based soft sensors still face some challenges, including (1) further reduction of the 
risk of prediction instability resulting from weight randomness, and (2) establishment of training
method under the conditions in which it is impossible to continuously obtain training data because
of reasons such as removal of permanent devices. We will develop technologies that can solve these
problems as well as promote the expansion of application range in our products. 
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