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  In the past, strength properties of structural materials have been evaluated by destructive

testing, however it was difficult to obtain and evaluate exhaustive data when the number of
destructive tests increased, which was costly and time-consuming. Mitsubishi Heavy Industries, 
Ltd. (MHI) has established a technology to promptly predict material strength properties by
applying informatic science, known as materials informatics, to structural metal materials. This 
technology is expected to contribute to the reduction of material strength variation, improvement of
manufacturing yield, and advancement of life evaluation technology. This report describes case
studies of applying the established technology to long steam turbine blades and high-temperature 
steam piping of thermal power plant. 

  |1. Introduction 
The strength properties of structural metal materials used in our high-temperature equipment 

are complicated with many influencing factors such as chemical compositions and heat treatment 
conditions, and quantitative evaluation of these properties by destructive testing is very costly and 
time-consuming. Recently, materials informatics (MI), which utilizes informatic science such as
machine learning for material design, has been attracting attention, and examples of new material
development in a short period of time by utilizing MI have been reported, mainly in the field of
functional materials(1). MHI has been applying MI to structural metal materials to rapidly predict
the strength properties of materials in order to optimize manufacturing conditions and develop 
technologies for evaluating the life of products. This report presents an overview of our initiatives.

|2. Optimal heat treatment condition prediction technology 
Figure 1 shows the appearance of a long steam turbine blade we manufacture(2). In 

manufacturing the long blade, procured round bar-shaped 17-4PH steel is forged into blade shapes, 
heat treated such as solution, stabilizing and aging, and then test specimens are taken from the
excess portion of the long blade to check the tensile properties. In this tensile test, there are cases in 
which the 0.2% proof stress varies and does not meet our control range, resulting in repeated heat
treatment or even disposal of the blade. The variation in 0.2% proof stress was assumed to be due
in part to the variation in the chemical compositions of the material. Therefore, we considered the 
application of MI to predict the optimum aging heat treatment temperature (time is constant) which
affects the strength, taking into account the chemical compositions, to reduce the variation of 0.2% 
proof stress in the tensile test. Figure 2 shows the manufacturing flow of long steam turbine blades
and an illustration of MI application. 

Table 1 summarizes the conditions under which the prediction model was created through 
machine learning. For the learning and measurement of prediction accuracy, approximately 8,300
standardized data on the chemical compositions of materials, heat treatment conditions, and 0.2% 
proof stress obtained from tensile tests of long steam turbine blades we manufactured in the past 
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were used (for preprocessing each piece of data, the deviation from the mean of all data was
divided by the standard deviation of all data). Approximately 800 data, which corresponds to 10%
of the total amount of data, were used as test data for measuring prediction accuracy, and the
remaining approximately 7,500 data were used as learning data. Since there is the possibility of
overestimating the prediction accuracy for unknown material charges if data of the same material 
charge are mixed in the learning and test data, the test data were extracted with consideration to
avoid mixing data of the same material charge in the learning and test data. For explanatory
variables, in addition to chemical compositions and heat treatment conditions, textual information 
that may affect the 0.2% proof stress, such as the type of heat treatment furnace used and the type
of die used during forging, was also considered, and those contributing to improved prediction
accuracy were selected. 

 
Figure 1  Appearance of long steam turbine blade 

 

 

Figure 2  Long steam turbine blade manufacturing flow and MI application 
 

Table 1  Summary of machine learning prediction model 

Explanatory variable 

- Chemical compositions
 (C, Si, Mn, P, S, Ni, Cr, Cu, Al, Nb+Ta, N, Ti) 
- Aging heat treatment temperature 
- Solution, stabilization, aging heat treatment time 
* Focused on aging heat treatment with respect to heat treatment temperature 

Objective variable 0.2% proof stress
Algorithm XGBoost 
Number of learning data Approx. 7500
Number of test data Approx. 800
  

Four machine learning algorithms, Support Vector Regression(3), RandomForest(3), 
CatBoost(4), and XGBoost (eXtreme Gradient Boosting)(5), were used to create prediction models, 
and the prediction accuracy was measured on test data. We adopted XGBoost, the prediction
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accuracy of which was the highest. XGBoost is a method combining a technique called boosting and
decision trees. Boosting improves prediction accuracy by creating multiple weak learners and
repeating the operation where the next learner corrects the errors of the previous learner. We
cross-validated XGBoost hyperparameters (number of decision trees, depth of decision trees,
learning rate, etc.) among the learning data, and adopted the combination that resulted in the highest
prediction accuracy. 

Figure 3 compares the observed values (tensile test results) and machine learning predictions
for the learning and test data. For both the learning and test data, the trends of observed and 
predicted values are generally consistent, indicating that the 0.2% proof stress trend can be
predicted based on the chemical compositions and heat treatment conditions. Prediction accuracy 
was evaluated using the standard error shown in the equation(1). 

= 1 ( − − 1)⁄ ( − )  ・・・・・・・・・・・(1) 

 
where  is the standard error,  is the number of data,  is the number of explanatory 

variables,  is the observed value, and  is the estimated value. The prediction accuracy of the 
test data was ±3  = ±37.2 MPa, which is smaller than our control range. However, due to the
influence of using an algorithm with a decision tree, a continuous prediction of the relationship
between aging heat treatment temperature and 0.2% proof stress is discontinuous and stepwise, as
shown in Figure 4. This material has increased proof strength due to the Cu-rich phase that 
precipitates during aging heat treatment(6). Considering that precipitation is continuously 
proportional to the temperature and time of aging heat treatment, it was assumed that the machine
learning prediction results were inconsistent with the precipitation behavior of the Cu-rich phase 
and deviated from the actual substance, and it was considered that if the optimal aging heat 
treatment temperature was predicted by inverse problem analysis, the prediction accuracy may
deviate from that measured by the test data. Therefore, as shown in the curve in Figure 4, the
relationship between aging heat treatment temperature and 0.2% proof stress was obtained by
predicting 0.2% proof stress through machine learning at a representative aging heat treatment
temperature with a relatively large number of data and assumed high prediction accuracy, and then 
approximating the result by a quadratic polynomial approximation. The prediction accuracy of the
test data was measured again using this method. The result was ±3  = ±37.8 MPa, which is 
almost the same prediction accuracy as before the quadratic polynomial approximation was 
performed, and now the relationship between aging heat treatment temperature and 0.2% proof
stress can be continuously predicted. Figure 5 shows the probability density of 0.2% proof stress 
before and after MI application. By using MI to predict the optimum aging heat treatment
temperature according to the chemical compositions of the procured material and applying it to the 
actual product, the 0.2% proof stress is expected to meet our control range at a higher probability
than before. 
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Figure 3  Comparison of 0.2% proof stress between observed values and machine learning 
predictions 

 

Figure 4  Relationship between aging heat treatment temperature, 
0.2% proof stress and number of data 

 

Figure 5  Probability density of 0.2% proof stress before 
and after MI application 
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|3. Creep property prediction technology 
Thermal power plants often use ferritic heat-resistant steels such as 9Cr-1Mo-Nb-V steel 

(The Interpretation for the Technical Standard for Thermal Power Plant KA-STPA28, ASME 
SA-335 P91) and 9Cr-1.8W steel (The Interpretation for the Technical Standard for Thermal Power
Plant KA-STPA29, ASME SA-335 P92) as materials for high-temperature steam piping. For these 
materials, creep rupture data were collected for each steel grade, and creep life evaluation formulas
were calculated using the LMP (Larson-Miller Parameter) method(7)(8) to predict creep life based on 
operating temperature and stress. However, since the data used to create the creep life evaluation
equation are analyzed together, differences in creep rupture strength between material charges are
not taken into account, and a certain amount of variation cannot be avoided in the predicted
strength values. Therefore, even if a material charge has excellent creep rupture strength, materials
with remaining creep life may be inspected early based on the life evaluation equation. 

If we can evaluate creep life considering the variation among material charges and reduce the
variation in creep rupture strength of materials to be procured, efficient maintenance management
of thermal power plants will be possible, which contributes to preventing unplanned plant 
shutdowns and improving reliability. Therefore, we studied creep life prediction technology that
factors in chemical compositions and heat treatment conditions by MI, conducted sensitivity
analysis of chemical compositions that affect creep rupture strength, and examined material 
specifications that can reduce the variation of creep rupture strength. This report describes a case
study of 9Cr-1.8W steel. 

Table 2 summarizes the conditions for creating a creep life prediction model through 
machine learning. For learning and measurement of prediction accuracy, creep rupture data of base
metal and welded joints of ferritic heat-resistant steel we acquired, and creep rupture data of base
metal of ferritic heat-resistant steel from the NIMS Creep Data Sheet(9), about 1,680 data in total 
were standardized and used. For measurement of prediction accuracy, about 100 data of 9Cr-1.8W 
steel with a rupture time of more than 1,000 hours were extracted and used, and the remaining
approximately 1,580 data were used as learning data. Also in this case, the test data were extracted
considering the material charge so that data of the same material charge would not be mixed in the
learning and test data, and the prediction accuracy was verified for unknown material charges. The 
machine learning algorithm used was CatBoost, which had the highest prediction accuracy. Like
XGBoost, the CatBoost is a method that combines boosting and decision trees, and is characterized
by its superior handling of textual information. Other methods for creating the prediction model are
the same as those described in Chapter 2. 

  
Table 2  Summary of machine learning prediction model 

Explanatory variable 

- Chemical compositions
 (C, Si, Mn, P, S, Ni, Cr, Mo, V, Nb, Al, N, W, B, Cu, Ti, N/Al) 
- Normalizing, tempering, and post-weld heat treatment temperature and time 
- Material shape (tube, pipe or plate) 
- Material thickness 
- Base metal or welded joint 
- Creep test temperature and stress (normal logarithm)

Objective variable Creep rupture time (normal logarithm)
Algorithm CatBoost 
Number of learning data Approx. 1580
Number of test data Approx. 100
  

Figure 6 compares the observed values of the test data (the ordinary logarithm of the rupture
time in the creep test) with the predicted values through machine learning. The observed and
predicted trends of the test data were generally consistent, indicating that the creep life trend can be 
predicted considering the chemical compositions and heat treatment conditions. This technology 
enables creep life evaluation that factors in variations in material chemical compositions, even for 
the same steel grade, and we use this technology in combination with the conventional LMP
method for screening of inspection points, etc. 
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Figure 6  Comparison of creep rupture time 
between observed values and machine 
learning prediction results 

 
Figure 7 shows the partial dependence plots of Mo, N, W and N/Al (ratio of N to Al) for

9Cr-1.8W steel. Partial dependence plots are machine-learning predictions of the average behavior 
of the objective variable when an explanatory variable is changed. In this case, only creep rupture 
data over 60,000 hours for 9Cr-1.8W steel were used to create partial dependence plots to check the
effect on creep rupture strength, especially over the long term. Mo was assumed to have a small
effect on the creep rupture time when varied within the range of the standard (ASME SA-335 P92). 
On the other hand, N, W, and N/Al were found to have an effect on the creep rupture time. N
showed a tendency to increase the creep rupture time with increasing additions up to about 0.05%.
This is assumed to be because the 9Cr-1.8W steel was precipitation strengthened by MX ((Nb, V)
(N, C))(10), which contributed to an increase in the amount of MX nucleation up to about 0.05%. It
was found that W had a tendency of increasing the creep rupture time when the content was greater 
than about 1.7%. This is assumed to be because W contributed to the increase in creep rupture
strength as a solid solution strengthening element in this grade(11). N/Al showed a tendency that 
with its increase up to about 4, the creep rupture time increased. This is assumed to be because a
larger N/Al resulted in a larger amount of effective N that did not bond with Al but became MX
and contributed to precipitation strengthening(12). In the past, it was difficult to quantitatively 
evaluate the optimal chemical composition ranges due to high experimental costs and long testing 
times required. However, by applying MI, quantitative evaluation can now be performed. By
incorporating the results of these MI evaluations into material purchase specifications as 
appropriate, we are studying to reduce creep rupture strength variation and prevent the purchase of
low-strength materials. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Mitsubishi Heavy Industries Technical Review Vol. 60 No. 1 (March 2023) 
 7 

 

 

Figure 7  Partial dependent plot for creep rupture time for 9Cr-1.8W steel 
 

|4. Conclusion 
By applying MI to structural metal materials, it is now possible to predict material strength

properties of metal materials based on previously acquired data. In the case of long steam turbine
blades, by creating a machine learning prediction model for 0.2% proof stress, we are able to 
predict the optimum aging heat treatment temperature according to the chemical compositions of 
the procured material and it was found that by applying it to actual products, the 0.2% proof stress
is expected to satisfy our control value with a higher probability than before. For ferritic
heat-resistant steel used for high-temperature steam piping in thermal power plants, it is now
possible to predict creep life in consideration of chemical compositions and heat treatment 
conditions. In addition, by utilizing MI, we are able to perform quantitative sensitivity analysis of
chemical compositions that affect creep rupture strength and it was found that the variation in creep
rupture strength could be reduced and the purchase of low-strength materials could be prevented. 
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