On-line Monitoring Equipments of Dioxins and their Precursors for Incineration Plants

MITSUHIRO OKADA*1
KENICHI YONEDA*1
SHIGEKI MORII*2
TAKUMI SUZUKI*2
KATSUO SEKI*2

1. Introduction

Dioxin emissions (hereafter abbreviated as DXNs) emitted from incineration plants have become an issue of major social concern. As a manufacturer of incineration plants, MHI has developed various means for advancing the combustion control and flue gas treatment of incinerators, and has achieved fruitful results in order to reduce DXNs1,(2).

On the other hand, it is necessary to verify the effectiveness of these measures by analyzing DXN levels based on official methods. However, a long time (several weeks) is needed to analyze DXNs because the concentration of DXNs is extremely small. Moreover, the DXNs must be separated into various isomers and each isomer must be quantitatively analyzed in order to assess the respective toxicities of each type of DXNs present. This problem has been a major barrier to verifying the effectiveness of the measurement of DXN levels. In addition, although DXN precursors have been suggested as being more effective in controlling DXNs than the CO conventionally used3, they are said to be unsuitable as indices for controlling combustion because of the long time amount of time required to analyze them like DXNs.

Therefore, the rapid measurement of DXNs and their precursors is very useful for the operation of incinerator furnaces and flue gas treatment plants.

With the aim of finding suitable solutions to these problems, this paper introduces a monitoring system consisting of an on-line equipment for measuring pentachloro-dibenzofuran (P5CDF) and a real time equipment for measuring trichlorobenzene (T3CB), which have been developed by MHI.

2. Configuration of system

The monitoring system is shown in Fig. 1. This system is basically composed of both equipments described above. Table 1 shows the major specifications of this monitoring system. The following paragraphs describe the vacuum ultraviolet ionization mass spectrometer (hereafter abbreviated to VUV analyzer) used in common with both equipments, the on-line equipment for measuring pentachloro-dibenzofuran (P5CDF) and a real-time equipment for measuring trichlorobenzene (T3CB).

*1 Yokohama Dockyard & Machinery Works
*2 Yokohama Research & Development Center, Technical Headquarters

Mitsubishi Heavy Industries, Ltd.
measuring PsCDF, and the real time equipment for measuring T3CB, respectively.

2.1 VUV analyzer

The principle of the VUV analyzer is shown in Fig. 2. A gas sample introduced into the ion trap in the VUV analyzer is irradiated with vacuum ultraviolet light through a window in order to ionize a target substance (PsCDF or T3CB in this case). When an electrical voltage with a specified frequency is applied between the end cap electrodes of the ion trap, only one kind of ion with a particular mass is selectively accumulated. After that, the target ions are dissociated into fragments by applying an electrical voltage with another specified frequency. The target substance and any impurities can be separated using this procedure. Finally, the target substance can be quantitatively determined by supplying the ions dissociated into fragments to a time of flight mass spectrometer (TOFMS).

This VUV ionization method can measure a target substance stably and to a high degree of sensitivity without being influenced by coexisting components, even in systems in which various components are mixed together such as flue gas from an incinerator furnace.

2.2 On-line equipment for measuring PsCDF

This equipment is installed downstream from the bag filter (dust collector) in order to monitor the concentration of PsCDF in gas emitted into the atmosphere, so as to contribute to the more effective operation of an incinerator or a flue gas treatment system. As shown in Fig. 1, this equipment consists of the automatic concentrator described later and a VUV analyzer.

It is very difficult to measure DXNs quickly, including various congeners and isomers in trace amounts. In fact, these components are analyzed in the present official method through GC/MS method. In the newly developed method described here, a particular congener that is closely correlated with toxicity equivalency quantity is chosen as an index, concentrated and then measured.

Fig. 3 shows relation between concentration of PsCDF and the toxicity equivalency quantity of DXNs, which

<table>
<thead>
<tr>
<th>Table 1 Specifications of system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td>Substance measured</td>
</tr>
<tr>
<td>Location where measured</td>
</tr>
<tr>
<td>Pre-treatment</td>
</tr>
<tr>
<td>Lower limit of measurement</td>
</tr>
<tr>
<td>Measurement interval</td>
</tr>
<tr>
<td>Feeding flow rate or amount</td>
</tr>
<tr>
<td>Outer dimensions (mm)</td>
</tr>
<tr>
<td>Mass (kg)</td>
</tr>
</tbody>
</table>
have been obtained by MHI. As can be seen in this figure, there is a strong correlation between the concentration of P\textsubscript{5}CDF and the toxicity equivalency quantity of DXNs. As a result, it is concluded that P\textsubscript{5}CDF can be effective as a monitoring index substance for DXNs.

Since the concentrations of DXNs to be monitored are as low as 0.01 to 0.1 ng-TEQ/m3, they are difficult to measure even with a VUV analyzer. Therefore, in the newly developed on-line measuring equipment, the flue gas is concentrated before the P\textsubscript{5}CDF concentrations are measured using the VUV analyzer. Fig. 4 shows an overview of the automatic concentrating process.

The flue gas is cooled after all dust has been removed, and is then fed to the primary concentrating section of the equipment and P\textsubscript{5}CDF is adsorbed with condensed water to be primarily concentrated. After drying the water adsorbed in the primary concentrating section, P\textsubscript{5}CDF is then subjected to solvent-extraction under high temperature and high pressure. After impurities have been removed from the solvent-extracted P\textsubscript{5}CDF solution, the solvent is evaporated in the secondary concentrating section. The concentrated P\textsubscript{5}CDF sample (the entire amount) is separated in a capillary column in gas chromatography, and finally fed into the VUV analyzer to be quantitatively determined. In order to increase the accuracy of the analysis, an internal standard substance is added for each measurement.

2.3 Real time equipment for measuring T\textsubscript{3}CB

It is known that incomplete combustion leading to formation of DXNs can be monitored by measuring the concentrations of CO. However, it is suggested that the concentration of DXN precursors has a better correlation with the combustion state than concentrations of CO in the low concentration region[3]. Basic data obtained by MHI also supports this suggestion. Hence, the present equipment can be used to monitor the DXNs formation in the furnace and to determine the operating condition by measuring T\textsubscript{3}CB levels real-timely at the outlet of furnace, because T\textsubscript{3}CB is a good index of DXNs among DXNs precursors.

The analysis procedure is as follows. The dust in the flue gas from the outlet of a furnace is first removed by filtration. The gas is then cooled to an appropriate temperature, after which the VUV analyzer is used to measure the amount of T\textsubscript{3}CB present in real time for each approximately 20 second interval.

3. Field test results

3.1 Result of P\textsubscript{5}CDF measurement

The results of measurements carried out in the field and results measured using the official method are shown in Fig. 5. The good correlation observed in the figure in the concentration range from 0.05 to 10 ng-TEQ/m3 con-
firms that measurement with a VUV analyzer is practically applicable.

In order to confirm the applicability of this method, a plant equipped with an electrostatic precipitator and a unit for supplying activated carbon powder into the flue gas for reducing DXNs was adopted as an example in the field tests. Fig. 6 shows the results obtained by measuring concentrations of PsCDF when the amount of activated carbon powder was varied at the plant.

The tendency that the concentration of PsCDF decreases with increasing the amount of activated carbon powder can be confirmed from Fig. 6. In addition, since the optimum amount of activated carbon powder in this plant can be determined with this equipment, the operating conditions of the flue gas treatment can also be controlled using this equipment. Accordingly, it has been proved that this equipment is also useful in reducing the running costs of the plant.

The present frequency for taking measurements is once per each two to six hours, depending on the concentration of PsCDF. These timings are considered to be very effective for adjusting operating condition in an flue gas treatment plant, bearing in mind the time needed for the operation state to become stabilized after the condition has been changed. When the concentration of PsCDF needs to be measured more frequently, the measuring interval can be shortened by multiplying concentrator.

3.2 Result of T3CB measurement

The effectiveness of the T3CB-measuring equipment was also investigated by the field tests using flue gas in the same way as the measurement of PsCDF. Fig. 7 shows the test results. It can be seen from this figure that there is a very good correlation between the T3CB concentrations and the values analyzed by the official method. Therefore, it was confirmed that the concentrations of DXNs at the outlet of an incinerator furnace can be estimated by measuring the concentration of T3CB.

Fig. 8 shows the concentrations of T3CB and CO obtained during continuous measurement with an interval of twenty seconds. From this figure, the amount of T3CB formed increases as the level of CO in the region where the concentration of CO is high increases. Thus, it is conceivable that the combustion state inside a furnace can be understood by this equipment and the optimum combustion condition can be found. The utilization of this concept is expected to be useful in ranges where concentrations of CO are low.

As described above, the ability to estimate the amount of DXN precursors continuously at the outlet of a furnace is very useful. This method is not only applicable for predicting and better understanding the mechanism of DXNs formation at the outlet of the furnace, but also possible to be utilized to a large extend in the research of combustion behavior varying according to the variation of the combustion condition in a furnace in the future.

Fig. 6 PsCDF concentration profile

The tendencies in the concentration of PsCDF can be determined by on-line measurement.

Fig. 7 Correlation between DXNs and T3CB

It can be seen that there is a good correlation between DXNs and T3CB.

Fig. 8 DXNs at outlet of furnace

It can be seen that the concentration of PsCDF decreases with increasing the amount of activated carbon powder.

Mitsubishi Heavy Industries, Ltd.

Moreover, by assessing DXNs levels, the T₃CB-measuring equipment can also be applied to adjusting combustion conditions in the trial operation of a furnace.

4. Conclusion

The achievement described above can be summarized as follows:

(1) The concentration of DXNs emitted can be estimated and monitored by measuring the concentration of P₅CDF in flue gas using a VUV analyzer after automatically concentrating the flue gas.

(2) The conditions under which DXNs are formed inside a furnace can be grasped by measuring T₃CB levels, thereby making it possible to determine the optimum combustion conditions for controlling DXNs.

(3) During the trial operation of an incinerator furnace, the on-line monitoring system could be used to adjust operation by monitoring DXNs concentrations, so that it can be effective in reducing running costs.

(4) The technology described above can be applied to the basic research and development of incinerator furnaces.

At present, the measured values using the on-line monitoring system cannot replace the values analyzed by the official method. However, the fact that measurement of DXNs or their precursors, which requires several weeks to analyze, can be completed in several hours or even in several dozens of seconds means that the very effective information that had not been previously obtainable can be presented in a timely manner for the more effective operation of incinerators and flue gas treatment. It is certain that the technology introduced in this paper is also applicable to a wide range of fields such as basic research and development other than the applications reported here.

Part of this research was supported by the Ministry of the Environment through the scientific research grant for waste treatment "Integration of DXNs Reduction Technologies". The authors are grateful to Prof. Dr. Masaru Tanaka, Okayama University, for his guidance and many other related people.

References

(1) Uoya et al., Reduction of Dioxins from Refuse Incinerator Plant, Mitsubishi Juko Giho Vol.29 No.4 (1992) p.327
(2) Uoya et al., Technology on Flue Gas Treatment of Fine Harmful Compounds from Municipal Incinerators, Mitsubishi Heavy Industries Technical Review Vol.29 No.2 (1992) p.131
(3) G. Sandstrom, 10th Int. Symp. on Dioxin, Vol.3 (1990) pp.151-156